Space-efficient alignment

Space is often the limiting factor

$\mathrm{O}(\mathrm{nm})$ time is a problem, but as I've said, we strongly believe we can't to much better.

Can we do better in terms of space?

It turns out we can - at the same asymptotic time complexity!

Combining dynamic programming with the divide-andconquer algorithm design technique.

Hirshberg's algorithm

Warmup - optimal score in linear space
Consider our DP matrix:

Warmup - optimal score in linear space
What scores to I need to know to fill in the answer here?
y

Warmup - optimal score in linear space
What scores to I need to know to fill in the answer here?

Warmup - optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in row i, we only need scores from row i-1.

Warmup - optimal score in linear space

Columns also work; if we go left - right, and bottom to top, to fill in column i , we only need scores from col $\mathrm{i}-1$.
y

Warmup - optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in row i , we only need scores from row i-1.

Thus, we can compute the optimal score, keeping at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the strings, and so we can compute the optimal score, in linear space.

How can we compute the optimal alignment?
This method won't work for computing the optimal alignment; we need all rows to be able to follow the backtracking arrows.

How can we find the optimal alignment in linear space?

Hirschberg's algorithm provides a solution.

Re-using subproblems

Consider, again, the meaning of the DP matrix
What is contained in the highlighted row?

Re-using subproblems

Consider, again, the meaning of the DP matrix score of every prefix of \mathbf{x} against all of \mathbf{y} in this row

Re-using subproblems

Consider, again, the meaning of the DP matrix
What is contained in the highlighted column?

m $\mathrm{S}_{\text {gep }}$										
3.5890										
2.sgep										
1.8 sap										
0	1.5 gep	2.spp	3.58 sp							$n \mathrm{n}_{\text {spop }}$

Re-using subproblems

Consider, again, the meaning of the DP matrix score of every prefix of \mathbf{y} against all of \mathbf{x} in this column

Re-using subproblems

score of every prefix of \mathbf{y} against ith $^{\text {p }}$ prefix of \mathbf{x} in the $\mathrm{ith}^{\text {th }}$ column. How do we get these values efficiently?

Re-using subproblems

score of every prefix of \mathbf{y} against ith $^{\text {p }}$ prefix of \mathbf{x} in the $i^{\text {th }}$ column. Easy if we fill in by columns instead of rows.
y

What about suffixes?

Consider filling in the DP matrix from the opposite direction (top right to bottom left)

What about suffixes?

Optimal alignment between $x[8:]$ and $y[6:]$

What about suffixes?

This lets us compute optimal score between a suffix of \mathbf{x} with all suffixes of \mathbf{y}

y $n \mathrm{~S}_{\text {spep }}$							1.59 gep	0
8 A								1.5 gap
7 T								2.89p
6 C								
5 T								
4 T								
3 G								
2 A								
1 A								ms spop
$\begin{gathered} \text { A } \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{G} \\ & 3 \end{aligned}$	$\begin{aligned} & C \\ & 4 \end{aligned}$	5	$\begin{array}{ll} T & A \\ 6 & 7 \end{array}$	$\begin{array}{cc} \mathrm{G} & \mathrm{C} \\ 8 & 9 \end{array}$	$\begin{gathered} T \\ 10 \end{gathered}$	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	\mathbf{x}

What about suffixes?

Prefixes (forward):
$\operatorname{OPT}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\text { OPT }^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right.$
Suffixes (backward):
OPT $^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\text { OPT }^{\prime}[i+1, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i+1, j]\end{array}\right.$
This lets us build up optimal alignments for increasing length suffixes of \mathbf{x} and \mathbf{y}

What about suffixes?

Prefixes (forward):
$\operatorname{OPT}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\mathrm{OPT}^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right\}^{1}$
Suffixes (backward):
OPT $^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\text { OPT }^{\prime}[i+1, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i+1, j]\end{array}\right.$
This lets us build up optimal alignments for increasing length suffixes of \mathbf{x} and \mathbf{y}

What about suffixes?

Prefixes (forward):
$\operatorname{OPT}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\mathrm{OPT}^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right.$
Suffixes (backward):
OPT $^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\text { OPT }^{\prime}[i+1, j+1] \\ \text { gap }+ \text { OPT }^{\prime}[i, j+1] \\ \text { gap }+ \text { OPT }^{\prime}[i+1, j]\end{array}\right.$
note: the slight change in indexing here. It will make writing our solution easier.

Finding the optimal alignment

How does this help us compute the optimal alignment in linear space?

Algorithmic idea: Combine both dynamic programs using divide-and-conquer

Divide-and-conquer splits a problem into smaller subproblems and combines the results (much like DP).

Examples: MergeSort \& Karatsuba multiplication

Think about this in "graph" land

What do we know about the structure of the optimal path in our "edit-DAG"?

Think about this in "graph" land

Can't get from here to there without passing through the middle.

Finding the optimal alignment

Consider the middle column - we know that the optimal aln. must use some cell in this column; which one?

Finding the optimal alignment

It uses the cell ((i, j) such that OPT[i,j] + OPT' $[i, j]$ has the highest score. Equivalently, the best path uses some vertex v in the middle col. and glues together the best paths from the source to v and from v to the sink.

Finding the optimal alignment

Claim: OPT[i,j] and OPT’[i,j] can be computed in linear space using the trick from above for finding an optimal score in linear space

Algorithmic Idea

Devise a D\&C algorithm that finds the optimal alignment path recursively, using the space-efficient scoring algorithm for each subproblem.

D\&C Alignment

```
DCAlignment(x, y):
    n = |x|
    m = |y|
    if m <= 2 or n <= 2:
        use "normal" DP to compute OPT(x, y)
compute space-efficient OPT(x[1:n/2], y)
compute space-efficient OPT'(x[n/2+1:n], y)
let q be the index maximizing OPT[n/2,q] + OPT'[n/2,q]
add back pointer of (n/2,q) to the optimal alignment P
DCAlignment(x[1:n/2], y[1:q])
DCAlignment(x[n/2+1:n], y[q+1:m])
return P
```


D\&C Alignment

How can we show that this entire process still takes quadratic time?

Let $T(n, m)$ be the running time on strings \mathbf{x} and \mathbf{y} of length n and m, respectively. We have:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n}, \mathrm{~m}) \leq \mathrm{cnn} \\
& \text { DCAlignment } \mathrm{C}[\\
& \quad \text { with bas } \\
& \mathrm{T}(\mathrm{n}, 2) \leq \mathrm{cn} \\
& \mathrm{~T}(2, \mathrm{~m}) \leq \mathrm{cm}
\end{aligned}
$$

D\&C Alignment

Base:
$T(n, 2) \leq c n$
$\mathrm{T}(2, \mathrm{~m}) \leq \mathrm{cm}$
Inductive:
$T(n, m) \leq c n m+T(n / 2, q)+T(n / 2, m-q)$
Problem: we don't know what q is. First, assume both \mathbf{x} and \mathbf{y} have length n and $\mathrm{q}=\mathrm{n} / 2$
(will remove this restriction later)
$\mathrm{T}(\mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$
This recursion solves as $T(n)=O\left(n^{2}\right)$
Leads us to guess $T(n, m)$ grows like $O(n m)$

Smarter Induction

Base:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n}, 2) \leq \mathrm{cn} \\
& \mathrm{~T}(2, \mathrm{~m}) \leq \mathrm{cm}
\end{aligned}
$$

Inductive:
$T(n, m) \leq k n m$
Proof:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}, \mathrm{~m}) & \leq \mathrm{cnm}+\mathrm{T}(\mathrm{n} / 2, \mathrm{q})+\mathrm{T}(\mathrm{n} / 2, \mathrm{~m}-\mathrm{q}) \\
& \leq \mathrm{cnm}+\mathrm{kqn} / 2+\mathrm{k}(\mathrm{~m}-\mathrm{q}) \mathrm{n} / 2 \\
& \leq \mathrm{cnm}+\mathrm{kqn} / 2+\mathrm{kmn} / 2-\mathrm{kqn} / 2 \\
& =[\mathrm{c}+(\mathrm{k} / 2)] \mathrm{mn}
\end{aligned}
$$

Thus, our proof holds if $\mathrm{k}=2 \mathrm{c}$, and $\mathrm{T}(\mathrm{n}, \mathrm{m})=\mathrm{O}(\mathrm{nm})$ QED

Conclusion

Trivially, we can compute the cost of an optimal alignment in linear space

By arranging subproblems intelligently we can define a "reverse" DP that works on suffixes instead of prefixes

Combining the "forward" and "reverse" DP using a divide and conquer technique, we can compute the optimal solution (not just the score) in linear space.

This still only takes $\mathrm{O}(\mathrm{nm})$ time; constant factor more work than the "forward"-only algorithm.

